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Abstract

An accurate estimate of interfacial stresses in multi-layered microelectronic packaging is very important for design

and prediction of delamination-related failures. An analytical model for stress analysis of multi-layered stacks, which is

based on an extension of Valisetty�s model (Bending of Beams, Plates and Laminates: Refined Theories and Com-

parative Studies, Ph.D. thesis, Georgia Institute of Technology, Atlanta, March 1983), is proposed in this paper. This

analytical approach considers each layer as a beam-type plate with orthotropic material properties. A new miniature

material testing unit is developed. High sensitive Moir�ee interferometry was used to measure the strain field in the bi-

material interfaces. The test data is in good agreement with the proposed analytical solution. The problem is also

analyzed by a finite element analysis. Comparison of all three results indicates that the analytical procedure is far

superior to finite element analysis for this problem.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many researchers studied the failure mechanisms in multi-layered microelectronic packaging. An ex-

tensive literature survey on the subject is presented by Basaran and Zhao (2001) below some of these papers

are highlighted. Delamination-related failures are the main problems at interfaces near the free edges. An
accurate estimate of interfacial stresses is needed for predicting the delamination failures. Many investi-

gators gave the numerical solutions for layered free edge problems. Pipes and Pagano (1970) analyzed this

problem with finite difference method. Wang and Crossman (1977) gave the finite element solution for the

same problem. Wang and Dixon (1978) extended Galerkin procedures. In addition, various studies (Lo

et al., 1977a,b; Levinson, 1980; Bert, 1984; Cho et al., 1987) of higher-order plate theory have been repor-

ted since Reissner (1975) introduced higher-order forms for longitudinal and transverse displacements.
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Cho et al. (1987) used higher-order theory in each layer separately which resulted in good agreement with

Pagano�s exact elastic-theory solution for a composite laminate in cylindrical bending (Pagano, 1969).

Hayashi (1967) presented the first analytical model that focused on the computation of interfacial shear

stress. Hayashi model was based on the implicit assumption that the in-plane stresses within a given layer
are independent of the thickness coordinate. Chen et al. (1982) took a very different approach, which

satisfied the boundary conditions at the free edges of a laminated beam. The analysis was based on two-

dimensional elasticity theory and the variational theorem of complementary energy (Washizu, 1968) under

the assumption of linear distribution of longitudinal normal strain through the thickness of each layer. A

similar approach was applied by Williams (1985) and showed good agreement with Chen et al. (1982). Bogy

(1968, 1970), Hein and Erdogan (1971) and Yin (1991) discussed stress singularities at the interfaces near

the free edges. Such stress singularities cannot be directly determined by the standard elastic finite element

analysis alone. Asymptotic analysis is needed around the junction point to determine the stresses in the
near-tip stress field (Lee and Jasiuk, 1991; Shih and Asaro, 1988, 1989). Shih and Asaro (1988, 1989)

studied elastic–plastic analysis of cracks on bi-material interfaces, where they showed mesh dependence of

finite element analysis and necessity of asymptotic analysis. In real life, such stress singularity (1=r) cannot
exist, physically. Once the stress level reaches the yield strength of the material, ductile materials yield and

brittle material cracks and stress is re-distributed to neighboring points. Basaran and Zhao (2001) have

shown that when damage mechanics based elastic–viscoplastic material models are used in finite element

method stress singularity ceases to be a significant issue.

Pagano (1974, 1978) firstly employed the ply mechanics technique to analyze composite laminates. Each
layer (or a sublaminate) is treated as a homogeneous body in equilibrium independent of the laminate. The

refined engineering theories (Valisetty and Rehfield, 1983; Valisetty, 1983; Rehfield and Valisetty, 1984)

for homogeneous plates and laminated plates provided another alternative for the layer or sublaminate

models.

This paper is an extension of the model proposed by Valisetty (1983) with emphasis on the stress be-

havior along the interfaces due to uniformly distributed loading. The primary common drawback of the

proposed models is that none of them have been verified by test data on an actual microelectronic package.

The model proposed in this paper has been verified in the lab by using a high sensitivity Moir�ee interfero-
metry. Testing was conducted on an actual microelectronic Ball Grid Array package.

2. Formulation of analytical model

Consider an N -layer laminated beam-type plate as shown in Fig. 1. A summary of the basic equations for

generic ply is given as follows. The overall equations of equilibrium and the constitutive equations for the

beam-type plate theory will constitute a set of 8N equations in terms of a number of variables (2N dis-
placements, N rotations, 3N force resultants, and 2N moment resultants). This set is supplemented by an

additional 2ðN � 1Þ equations, which are necessary for the simultaneous solution of 2ðN � 1Þ interfacial

stresses, if the displacement continuity is enforced at ðN � 1Þ laminar interfaces. Among this set of equa-

tions the force-resultant and moment-resultant variables can be eliminated with the aid of constitutive

equations; these eliminations leave a set of ð5N � 2Þ coupled differential equations to be solved for 2N
displacement variables, N rotations, and 2ðN � 1Þ interfacial stresses.

Neglecting body forces, body moments and all derivatives with respect to X1, we can write the following

force and moment equilibrium equations for each layer using the stresses in kth layer:

Nk
2;2 þ nk

2 ¼ 0 ð1Þ

Mk
2;2 þ ckmk

2 � Qk
2 ¼ 0 ð2Þ
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Qk
2;2 þ qk ¼ 0 ð3Þ

where comma identifies differentiation w.r.t. the axis number after the comma. Superscript k identifies kth
ply. The difference in interfacial stresses between layers k and k � 1 yield the stress imposed on each layer,
which can be given by,

nk
2 ¼ rk�1

2z ðx2; ckÞ � rk
2zðx2;�ckÞ

mk
2 ¼ rk�1

2z ðx2; ckÞ þ rk
2zðx2;�ckÞ

qk ¼ rk�1
zz ðx2; ckÞ � rk

zzðx2;�ckÞ

ð4a; b; cÞ

where N2, M2, Q2 are, respectively, the force, moment, and shear resultants per unit width of the plate,

associated with the X2 coordinate direction, and n2, m2 and q are the load intensities for each layer related to

interfacial stresses. N2;2, M2;2, Q2;2 are, respectively, the derivatives of N2, M2, Q2 with respect to X2. The

semi-thickness of the kth ply is ck. Superscript k, which identifies the generic ply, will be dropped in the

subsequent equations for convenience.

Most microelectronic packaging have orthotropic material properties. Moreover the loading is usually in
the form of a thermal gradient or uniformly distributed loading. Hence we modify Valisetty beam-type

plate model to introduce uniformly distributed loading and thermal gradient. In constitutive relations we

also modify the coefficients Cij and Ci to introduce the orthotropic material properties. As a result we

obtain the following constitutive relations:

Ni

h
¼ �Cij DT aj þ Ci2U2;2 þ Knicn2;2 þ Kpip; i; j ¼ 1; 2

Mi

I
¼ �Ci2W;22 þ Kmim2;2 þ Kqiq=c

U2 þ W;2 ¼
c2

2I
S44 Q2

�
� 1

3
cm2

�
ð5a; b; cÞ

Fig. 1. Generic laminated beam-type plate.
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where

Kmi ¼ ð3Ci2S3jCj2=C22 � 2Ci2S44 þ 2CiÞ=20; i; j ¼ 1 and 2

Kqi ¼ ð3Ci2S3jCj2=C22 � 12Ci2S44 þ 12CiÞ=20
Kni ¼ ðCi2S3jCj2=C22 þ Ci2S44 þ 2CiÞ=12
Kpi ¼ Ci=2

p ¼ rzzðx2; cÞ þ rzzðx2;�cÞ
h ¼ 2c; I ¼ 2c3=3

C11 ¼ C11 �
C13C31

C33

; C12 ¼ C12 �
C13C32

C33

C21 ¼ C21 �
C23C31

C33

; C22 ¼ C22 �
C23C32

C33

C1 ¼
C13

C33

; C2 ¼
C23

C33

ð6Þ

Cij is the stiffness coefficients of orthotropic materials, aj, coefficient of thermal expansion of kth layer in

direction j, DT , thermal gradient, U , W are the displacement components in the x2- and z-direction, res-
pectively, at z ¼ 0 surface and U2 is the rotation of a normal to the reference surface (z ¼ 0).

Solution of the differential equations for the classical plate theory with beam-like behavior assumptions

yield the following stress and displacement distribution equations:

ri ¼
1

h
Ni þ

1

2h
Kin2;2ðz2 � c2=3Þ þ z

I
Mi þ

1

6I
Kiðcm2;2 þ qÞðz3 � 3c2z=5Þ; i; j ¼ 1; 2

r2z ¼
z
h
n2 þ

c

6I
m2ð3z2 � c2Þ � 1

2I
Q2ðz2 � c2Þ

rzz ¼
1

2
p � 1

2h
n2;2ðz2 � c2Þ þ z

h
q� 1

6I
ðcm2;2 þ qÞðz3 � c2zÞ

ð7a; b; cÞ

where

Ki ¼ Ci2S3jC2j=C22 þ Ci2S44 � Ci; i; j ¼ 1; 2 ð8Þ
r1 is the normal stress in the x1-direction in any layer, r2, normal stress in the x2-direction, in any layer, r2z,
shear stress in the x2–z plane, rzz, transverse normal stress in the thickness coordinate z-direction, peeling
stress.

w ¼ W þ S3j Nj
z
h

�
þMj

z2

2I

�
þ S3jKj

1

6h
n2;2ðz3 � c2zÞ þ S3jKj

cm2;2 þ q

6I
ðz4=4� 3c2z2=10Þ

þ S33
z
2
p

�
þ z2

2h
q
�
� S33

1

6h
n2;2ðz3 � 3c2zÞ � S33

cm2;2 þ q

6I
ðz4=4� c2z2=2Þ þ zDT az j ¼ 1; 2

u2 ¼ U2 � zW;2 � S3j Nj
z2

2h

�
þMj

z3

6I

�
;2

� S3jKj
n2;22
6h

ðz4=4
�

� c2z2=2Þ þ cm2;22 þ q;2
6I

ðz5=20� c2z3=10Þ
�

� S33
z2

4
p;2

�
� 1

6h
n2;22ðz4=4� 3c2z2=2Þ þ z3

6h
q;2 �

cm2;22 þ q;2
6I

ðz5=20� c2z3=6Þ
�

þ S44
z2

2h
n2

�
þ 1

6I
cm2ðz3 � c2zÞ � 1

6I
Q2ðz3 � 3c2zÞ

�

ð9a; bÞ
where w, u2 are the displacement components in the z and x2 coordinate directions respectively.
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3. Verification of the model

In order to verify the analytical model, an actual microelectronic Ball Grid Array (BGA) type micro-

processor package is used. Fig. 2 shows the picture of the actual package used in this study. The first layer is
BT substrate, the second layer is eutectic Pb/Sn solder, and the third layer is silicon die. The width of the

specimen is 7.04 mm. High sensitivity Moir�ee interferometry was utilized to measure the strain field in the

package. The geometry of the idealized model is shown in Fig. 3. The specimen was subjected to uniformly

distributed load. In order to keep the behavior in elastic region the applied load is very small 0.0388 N/mm.

Table 1 shows the orthotropic material properties as well as the dimensions and uniformly distributed load

level used in this study. Material properties were obtained using a nanoindenter and by testing the actual

package itself.

Fig. 2. Cross section of the actual BGA package.

Fig. 3. Idealized model and loading of the specimen.

Table 1

Material properties, dimensions and loading information

M1 (BT) M2 (Pb/Sn solder) M3 (silicon)

E1 (GPa) 17.5 24.3 112

E2 (GPa) 10.4 24.3 148

E3 (GPa) 4.7 24.3 168

G12 (GPa) 3.54 9.2 46.2

G13 (GPa) 9.04 9.2 33.2

G23 (GPa) 1.58 9.2 51.7

m12 0.32 0.32 0.28

m13 0.32 0.32 0.28

m23 0.32 0.32 0.28

h (mm) 1.32 0.096 0.714

2L� b (mm) 20.5� 7.04

q0 (N/mm) 0.0388
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Assuming perfect displacement compatibility at the interfaces, the continuity requirement of displace-

ments yields the following equations:

u12 x2;
h1
2

� �
¼ u22 x2;

�
� h2

2

�

u22 x2;
h2
2

� �
¼ u32 x2;

�
� h3

2

�

w1 x2;
h1
2

� �
¼ w2 x2;

�
� h2

2

�

w2 x2;
h2
2

� �
¼ w3 x2;

�
� h3

2

�
ð10a; b; c; dÞ

There are 10 unknowns and 10 equations. They are W 1, W 2, W 3, U 1
2 , U

2
2 , U

3
2 , r

1
zz, r

2
zz, r

1
2z, and r2

2z where r1
zz is

the peeling stress at interface 1, r2
zz, peeling stress at interface 2, r1

2z, shear stress at interface 1, r2
2z is the

shear stress at interface 2.

We introduce the following boundary conditions for this problem:

at x2 ¼ 0:

U 1
2 ¼ 0; U1

2 ¼ 0; Q1
2 ¼ 0

U 2
2 ¼ 0; U2

2 ¼ 0; Q2
2 ¼ 0

U 3
2 ¼ 0; U3

2 ¼ 0; Q3
2 ¼ 0

ð11aÞ

at x2 ¼ L:

N 1
2 ¼ 0; M1

2 ¼ 0; W 1 ¼ 0

N 2
2 ¼ 0; M2

2 ¼ 0; W 2 ¼ 0

N 3
2 ¼ 0; M3

2 ¼ 0; W 3 ¼ 0

ð11bÞ

Using a hyperbolic solution we can obtain the following analytical solutions for this problem (n ¼ x2=L):

r1
2z ¼ 0:244179n þ 1:1039� 10�13n3 � 1:698� 10�24n4 þ 1:3238� 10�24n5

� 7:77263� 10�11 coshð19:1422nÞ sinð8:04406nÞ
þ 5:72243� 10�38 coshð80:1373nÞ sinð47:1544nÞ
þ 1:58829� 10�92 coshð206:985nÞ sinð145:569nÞ
� 2:5206� 10�6 sinhð9:89979nÞ þ 5:8532� 10�27 sinhð58:1214nÞ

r2
2z ¼ 0:256381n � 2:08316� 10�13n3 þ 1:91455� 10�24n4 � 1:49263� 10�24n5

� 7:6981� 10�11 coshð19:1422nÞ sinð8:04406nÞ
� 1:02923� 10�36 coshð80:1373nÞ sinð47:1544nÞ
� 3:07981� 10�92 coshð206:985nÞ sinð145:569nÞ
� 1:93177� 10�6 sinhð9:89979nÞ þ 8:15591� 10�27 sinhð58:1214nÞ
� 2:47146� 10�12 cosð8:04406nÞ sinhð19:1422nÞ
þ 6:38423� 10�37 cosð47:1544nÞ sinhð80:1373nÞ
þ 3:1741� 10�94 cosð145:569nÞ sinhð206:985nÞ
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r1
zz ¼ � 0:0192352 � 2:21652� 10�14n2 � 5:54753� 10�20n4 þ 4:32498� 10�20n5

þ 2:26043� 10�6 coshð9:89979nÞ � 7:66168 � 10�27 coshð58:1214nÞ
� 5:40925� 10�11 cosð8:04406nÞ coshð19:1422nÞ
� 7:08402� 10�38 cosð47:1544nÞ coshð80:1373nÞ
� 8:1104� 10�92 cosð145:569nÞ coshð206:985nÞ
� 3:16073� 10�11 sinð8:04406nÞ sinhð19:1422nÞ
� 1:23006� 10�37 sinð47:1544nÞ sinhð80:1373nÞ
� 1:11601� 10�91 sinð145:569nÞ sinhð206:985nÞ

r2
zz ¼ � 0:0215826 � 1:55024� 10�14n2 þ 6:76039� 10�20n4 � 5:27055� 10�20n5

þ 2:46604� 10�6 coshð9:89979nÞ � 1:16335 � 10�26 coshð58:1214nÞ
� 4:79321� 10�11 cosð8:04406nÞ coshð19:1422nÞ
� 3:74523� 10�38 cosð47:1544nÞ coshð80:1373nÞ
� 3:71061� 10�93 cosð145:569nÞ coshð206:985nÞ
� 1:7806� 10�11 sinð8:04406nÞ sinhð19:1422nÞ
þ 4:47561� 10�37 sinð47:1544nÞ sinhð80:1373nÞ
þ 5:56227� 10�94 sinð145:569nÞ sinhð206:985nÞ

W 1 ¼ � 0:00411616þ 0:0048809n2 � 0:000748132n4 � 0:0000101263n5

� 7:81453� 10�10 coshð9:89979nÞ þ 6:70124� 10�32 coshð58:1214nÞ
þ 4:64708� 10�15 cosð8:04406nÞ coshð19:1422nÞ
� 2:82542� 10�43 cosð47:1544nÞ coshð80:1373nÞ
� 4:44478� 10�98 cosð145:569nÞ coshð206:985nÞ
þ 7:75408� 10�15 sinð8:04406nÞ sinhð19:1422nÞ
þ 4:39039� 10�43 sinð47:1544nÞ sinhð80:1373nÞ
þ 6:62423� 10�98 sinð145:569nÞ sinhð206:985nÞ

W 2 ¼ � 0:00413873þ 0:00490336n2 � 0:000748132n4 � 0:0000101263n5

� 6:69307� 10�10 coshð9:89979nÞ þ 4:17166� 10�32 coshð58:1214nÞ
þ 4:33801� 10�16 cosð8:04406nÞ coshð19:1422nÞ
� 6:90151� 10�43 cosð47:1544nÞ coshð80:1373nÞ
� 2:40261� 10�99 cosð145:569nÞ coshð206:985nÞ
þ 2:67108� 10�17 sinð8:04406nÞ sinhð19:1422nÞ
� 2:65463� 10�42 sinð47:1544nÞ sinhð80:1373nÞ
� 2:55026� 10�97 sinð145:569nÞ sinhð206:985nÞ
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W 3 ¼ � 0:0041398þ 0:00490446n2 � 0:000748132n4 � 0:0000101263n5

� 6:36534� 10�10 coshð9:89979nÞ � 8:2022� 10�33 coshð58:1214nÞ
þ 2:05363� 10�16 cosð8:04406nÞ coshð19:1422nÞ
� 2:82143� 10�43 cosð47:1544nÞ coshð80:1373nÞ
� 1:44152� 10�99 cosð145:569nÞ coshð206:985nÞ
þ 3:77458� 10�17 sinð8:04406nÞ sinhð19:1422nÞ
þ 2:64981� 10�43 sinð47:1544nÞ sinhð80:1373nÞ
þ 1:96037� 10�99 sinð145:569nÞ sinhð206:985nÞ

U 1
2 ¼ 0:000837783n � 0:000292504n3 þ 0:000208293n4 � 0:00016239n5

þ 2:1838� 10�10 sinhð9:89979nÞ � 1:97618� 10�31 sinhð58:1214nÞ
þ 4:48702� 10�15 coshð19:1422nÞ sinð8:04406nÞ
� 1:76933� 10�42 coshð80:1373nÞ sinð47:1544nÞ
� 4:5257� 10�97 coshð206:985nÞ sinð145:569nÞ
� 4:37536� 10�16 cosð8:04406nÞ sinhð19:1422nÞ
þ 3:77441� 10�44 cosð47:1544nÞ sinhð80:1373nÞ
þ 3:95631� 10�99 cosð145:569nÞ sinhð206:985nÞ

U 2
2 ¼ 0:000250836n � 0:0000822119n3 þ 0:000208293n4 � 0:00016239n5

� 2:85709� 10�10 sinhð9:89979nÞ þ 8:57583 � 10�34 sinhð58:1214nÞ
þ 4:8129� 10�16 coshð19:1422nÞ sinð8:04406nÞ
þ 1:89974� 10�43 coshð80:1373nÞ sinð47:1544nÞ
þ 8:24727� 10�98 coshð206:985nÞ sinð145:569nÞ
þ 5:34755� 10�16 cosð8:04406nÞ sinhð19:1422nÞ
� 5:96538� 10�42 cosð47:1544nÞ sinhð80:1373nÞ
� 2:60274� 10�98 cosð145:569nÞ sinhð206:985nÞ

U 3
2 ¼ � 0:000133259n þ 0:0000380824n3 þ 0:000208293n4 � 0:00016239n5

� 2:1825� 10�11 sinhð9:89979nÞ þ 9:83664� 10�33 sinhð58:1214nÞ
� 1:44349� 10�16 coshð19:1422nÞ sinð8:04406nÞ
� 7:06139� 10�43 coshð80:1373nÞ sinð47:1544nÞ
� 1:99438� 10�98 coshð206:985nÞ sinð145:569nÞ
þ 1:3021� 10�16 cosð8:04406nÞ sinhð19:1422nÞ
þ 5:70578� 10�43 cosð47:1544nÞ sinhð80:1373nÞ
þ 7:70085� 10�100 cosð145:569nÞ sinhð206:985nÞ ð12Þ
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4. Experimental setup

Fig. 4 shows the experimental setup. A miniature material tester unit was developed and manufactured

for this project. The testing unit uses DC-Mike Actuator M-235.5DG to apply the force. The actuator can

be connected with a computer to control the displacement. The resolution for the actuator is 0.016 lm, and

the maximum travel range is 50 mm. It can apply a maximum force of 120 N. There is a loadcell that is used

to measure the applied force between the actuator and the specimen. The capacity for the loadcell ALD-SP-
UTC-M-F-250 is 125 N. An aluminum block (thickness 9.7 mm) is placed between the specimen and the

loadcell to obtain a uniformly distributed loading. We did have to try several different thickness blocks to

obtain uniform loading. Moir�ee interferometry was very instrumental to see that there is no bending in the

aluminum block and load is uniform. Special grease is applied between the block and actuator to prevent

the application of lateral load component. Most important feature of this miniature material testing unit is

that it fits very easily on an optical table to take real-time data with Moir�ee interferometry. Moreover it can

be used for testing specimens too small for commercially available miniature material testers.

Moir�ee interferometry is an optical technique for determining in-plane displacements and strains, and
features very high displacement sensitivity and spatial resolution. It uses two coherent beams of a laser to

generate interferometric fringe pattern that carries the information of in-plane deformation of the object

surface. A thin layer of epoxy is applied to the specimen surface to replicate an optical diffraction grating on

the surface. The diffraction grating deforms with the specimen surface as the specimen is loaded, and the

diffracted light records every detail of the deformed lines of the grating and hence records the deformation

of specimen surface. The fringe pattern can be related to in-plane deformation as

U ¼ Nx

f

V ¼ Ny

f

ð13Þ

where U is the displacement in x-direction, V , the displacement in y-direction, Nx, the fringe order from
U field, Ny , the fringe order from V field and f is the frequency of reference grating, 1200 lines/mm.

Fig. 4. Experimental setup.
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The resolution of Moir�ee interferometry used in this work is 0.417 lm/fringe.

Fig. 5 shows the schematic illustration of two-beam Moir�ee interferometry to record the Nx and Ny fringe

patterns that depict the U and V displacement fields. Once the displacements are available the total strains

are computed by differentiation of the displacement distributions with respect to the two basic directions:

horizontal ðxÞ and vertical ðyÞ. The strains are given by

ex ¼
1

f
oNx

ox

� �

ey ¼
1

f
oNy

oy

� �

cxy ¼
oU
oy

þ oV
ox

¼ 1

f
oNx

oy

�
þ oNy

ox

�
ð14Þ

Fig. 6(a) shows the initial U fringe field. Fig. 6(b)–(d) show the U fringe field for P ¼ 5:6, 14 and 29.6 N,

respectively. Initial V fringe field is shown in Fig. 7(a). Fig. 7(b)–(d) show the V fringe field for P ¼ 5:6, 14
and 29.6 N, respectively. The P load value is the loadcell registered value. Due to aluminum block the
package is subjected to a uniformly distributed load given by q0 ¼ P=ð2L� bÞ.

It should be pointed out that fringe fields shown in Figs. 6 and 7 are not perfectly symmetric. This is due

to the fact that almost all microelectronic packages have initial manufacturing defects such as voids. Moir�ee
interferometry easily picks up these defects as long as they are larger than 0.417 lm in any dimension.

Fig. 5. Schematic illustration of two-beam Moir�ee interferometry.

Fig. 6. (a) Initial U field. U field for (b) P ¼ 5:6 N, (c) P ¼ 14 N, and (d) P ¼ 29:6 N.
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5. Finite element analysis

The present example problem was also analyzed by a two-dimensional FEA using general-purpose finite

element code ANSYS with quadrilateral elements under the plane strain condition in the x2–z plane. Fig. 8
shows a mesh of elements for this problem. The total number of elements is 8400. This is a fine mesh and

yields reasonable results according to an earlier study by Basaran and Zhao (2001).

6. Results and discussion

The deflection of the package is shown in Fig. 9 for FEA, test data and analytical solutions, respectively.

Excellent agreement is shown with these three methods. Fig. 10 shows the axial normal stress distribution

for BT layer along the longitudinal direction for FEA, test data and analytical solutions, respectively. The

analytical solution is in very good agreement with FEA, but different from the test data by a difference of

22.4%.
Figs. 11 and 12 show the shear stress distribution along interfaces one and two for FEA, test data and

analytical solutions, respectively. Figs. 13 and 14 show the distribution of peeling stress at interfaces one

and two for FEA, test data and analytical solutions, respectively. Numeration of layers starts from the

bottom.

The distribution of interfacial shear stresses and peeling stresses by the present theory gives good

agreement with the results by the experiment. Both quantitative and qualitative values for the results are

very close between the experiment and the analytical solutions. On the other hand even though FEA yields

qualitatively close results, quantitative FEA results are far off from test data and analytical results. In Figs.
11 and 12 shear stresses monotonically increase and reach the maximum values at the free edge for the

Fig. 7. (a) Initial V field. V field for (b) P ¼ 5:6 N, (c) P ¼ 14 N, and (d) P ¼ 29:6 N.

Fig. 8. Illustration of the FEA model for the three-layered problem.
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Fig. 9. Comparison of the deflection for FEA, test and analytical solution.

axial normal stress for BT layer

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

normalized distance from centerline, X2/L

ax
ia

l n
or

m
al

 s
tr

es
s 

(M
P

a)

analytical
test
FEA

Fig. 10. Comparison of axial normal stress for BT layer for FEA, test and analytical solution.
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Fig. 11. Comparison of shear stress at interface 1 for FEA, test and analytical solution.
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Fig. 12. Comparison of shear stress at interface 2 for FEA, test and analytical solution.
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Fig. 13. Comparison of peeling stress at interface 1 for FEA, test and analytical solution.
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Fig. 14. Comparison of peeling stress at interface 2 for FEA, test and analytical solution.
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analytical approach, but increase firstly then drop dramatically to get to a negative value at the free edge for

FEA. In Fig. 13 the peeling stress monotonically decreases and reaches the minimum value at the edge for

both analytical approach and experiment, but decreases firstly and then increase near the edge for FEA. In

Fig. 14 the peeling stresses monotonically decrease and reach the minimum values at the free edge for the
analytical approach, experiment and FEA. The minimum values for peeling stresses are very close between

experiment results and analytical solutions, but quite different from FEA. Basaran and Zhao (2001) have

shown that linear-elastic FEA suffers from mesh sensitivity for layered composite structures. Mesh sensi-

tivity in layered bi-material structures is due to stress singularity near the free edge. To be able to use FEA

for this problem a separate asymptotic analysis is required. On the other hand the proposed method does

not suffer from the stress singularity at the edge. Experimental results obviously do not show stress sin-

gularity at 0.417 lm resolution. As has been shown by Basaran and Zhao (2001) in real life stress singu-

larity is due to the solution of elasticity equation not a material response where stress reaches infinity. In
reality as Moir�ee fringes show high stresses at the edge are redistributed to neighboring parts. The agreement

between experiments and analytical procedure shows that the present analytical solution is reasonably

accurate for estimating the interfacial stresses under uniformly distributed loading.

7. Conclusions

An analytical procedure based on classical plate theory for calculating interfacial shear and peeling

stresses in layered structures under uniformly distributed loading and thermal gradient is presented. The

model has been verified for uniformly distributed loading case. This method takes into account orthotropic

material properties. The proposed method has been verified by high sensitivity Moir�ee interferometry. The

analytical results are in good agreement with experiment results. Comparison of analytical, experimental

and finite element analysis indicate that no matter how fine the finite element mesh is it cannot capture the
actual physical behavior near the free edge even qualitatively. Hence the analytical procedure is much easier

to use for this particular problem.
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