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Abstract

An accurate estimate of interfacial stresses in multi-layered microelectronic packaging is very important for design
and prediction of delamination-related failures. An analytical model for stress analysis of multi-layered stacks, which is
based on an extension of Valisetty’s model (Bending of Beams, Plates and Laminates: Refined Theories and Com-
parative Studies, Ph.D. thesis, Georgia Institute of Technology, Atlanta, March 1983), is proposed in this paper. This
analytical approach considers each layer as a beam-type plate with orthotropic material properties. A new miniature
material testing unit is developed. High sensitive Moiré interferometry was used to measure the strain field in the bi-
material interfaces. The test data is in good agreement with the proposed analytical solution. The problem is also
analyzed by a finite element analysis. Comparison of all three results indicates that the analytical procedure is far
superior to finite element analysis for this problem.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many researchers studied the failure mechanisms in multi-layered microelectronic packaging. An ex-
tensive literature survey on the subject is presented by Basaran and Zhao (2001) below some of these papers
are highlighted. Delamination-related failures are the main problems at interfaces near the free edges. An
accurate estimate of interfacial stresses is needed for predicting the delamination failures. Many investi-
gators gave the numerical solutions for layered free edge problems. Pipes and Pagano (1970) analyzed this
problem with finite difference method. Wang and Crossman (1977) gave the finite element solution for the
same problem. Wang and Dixon (1978) extended Galerkin procedures. In addition, various studies (Lo
et al., 1977a,b; Levinson, 1980; Bert, 1984; Cho et al., 1987) of higher-order plate theory have been repor-
ted since Reissner (1975) introduced higher-order forms for longitudinal and transverse displacements.
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Cho et al. (1987) used higher-order theory in each layer separately which resulted in good agreement with
Pagano’s exact elastic-theory solution for a composite laminate in cylindrical bending (Pagano, 1969).

Hayashi (1967) presented the first analytical model that focused on the computation of interfacial shear
stress. Hayashi model was based on the implicit assumption that the in-plane stresses within a given layer
are independent of the thickness coordinate. Chen et al. (1982) took a very different approach, which
satisfied the boundary conditions at the free edges of a laminated beam. The analysis was based on two-
dimensional elasticity theory and the variational theorem of complementary energy (Washizu, 1968) under
the assumption of linear distribution of longitudinal normal strain through the thickness of each layer. A
similar approach was applied by Williams (1985) and showed good agreement with Chen et al. (1982). Bogy
(1968, 1970), Hein and Erdogan (1971) and Yin (1991) discussed stress singularities at the interfaces near
the free edges. Such stress singularities cannot be directly determined by the standard elastic finite element
analysis alone. Asymptotic analysis is needed around the junction point to determine the stresses in the
near-tip stress field (Lee and Jasiuk, 1991; Shih and Asaro, 1988, 1989). Shih and Asaro (1988, 1989)
studied elastic—plastic analysis of cracks on bi-material interfaces, where they showed mesh dependence of
finite element analysis and necessity of asymptotic analysis. In real life, such stress singularity (1/r) cannot
exist, physically. Once the stress level reaches the yield strength of the material, ductile materials yield and
brittle material cracks and stress is re-distributed to neighboring points. Basaran and Zhao (2001) have
shown that when damage mechanics based elastic—viscoplastic material models are used in finite element
method stress singularity ceases to be a significant issue.

Pagano (1974, 1978) firstly employed the ply mechanics technique to analyze composite laminates. Each
layer (or a sublaminate) is treated as a homogeneous body in equilibrium independent of the laminate. The
refined engineering theories (Valisetty and Rehfield, 1983; Valisetty, 1983; Rehfield and Valisetty, 1984)
for homogeneous plates and laminated plates provided another alternative for the layer or sublaminate
models.

This paper is an extension of the model proposed by Valisetty (1983) with emphasis on the stress be-
havior along the interfaces due to uniformly distributed loading. The primary common drawback of the
proposed models is that none of them have been verified by test data on an actual microelectronic package.
The model proposed in this paper has been verified in the lab by using a high sensitivity Moiré interfero-
metry. Testing was conducted on an actual microelectronic Ball Grid Array package.

2. Formulation of analytical model

Consider an N-layer laminated beam-type plate as shown in Fig. 1. A summary of the basic equations for
generic ply is given as follows. The overall equations of equilibrium and the constitutive equations for the
beam-type plate theory will constitute a set of 8NV equations in terms of a number of variables (2N dis-
placements, N rotations, 3N force resultants, and 2N moment resultants). This set is supplemented by an
additional 2(N — 1) equations, which are necessary for the simultaneous solution of 2(N — 1) interfacial
stresses, if the displacement continuity is enforced at (N — 1) laminar interfaces. Among this set of equa-
tions the force-resultant and moment-resultant variables can be eliminated with the aid of constitutive
equations; these eliminations leave a set of (SN — 2) coupled differential equations to be solved for 2N
displacement variables, N rotations, and 2(N — 1) interfacial stresses.

Neglecting body forces, body moments and all derivatives with respect to X;, we can write the following
force and moment equilibrium equations for each layer using the stresses in kth layer:

Ny, +n5=0 (1)

My, + o — 05 =0 (2)
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N,

Fig. 1. Generic laminated beam-type plate.

Qg,z + qk =0 (3)

where comma identifies differentiation w.r.t. the axis number after the comma. Superscript & identifies kth
ply. The difference in interfacial stresses between layers £ and k£ — 1 yield the stress imposed on each layer,
which can be given by,

ny = 5. (%2, ¢x) — 05, (x2, —cx)

mg = a’;l (%2, ¢4) + agz(xz, —c) (4a,b,c)

qk = Glz{z_l(x27ck) - sz(x27 _ck)

where N,, M,, O, are, respectively, the force, moment, and shear resultants per unit width of the plate,
associated with the X, coordinate direction, and n,, m, and g are the load intensities for each layer related to
interfacial stresses. Na,, M,,, 025 are, respectively, the derivatives of N,, M, O, with respect to X,. The
semi-thickness of the kth ply is c*. Superscript &, which identifies the generic ply, will be dropped in the
subsequent equations for convenience.

Most microelectronic packaging have orthotropic material properties. Moreover the loading is usually in
the form of a thermal gradient or uniformly distributed loading. Hence we modify Valisetty beam-type
plate model to introduce uniformly distributed loading and thermal gradient. In constitutive relations we
also modify the coefficients C;; and C; to introduce the orthotropic material properties. As a result we
obtain the following constitutive relations:

N; = — .

o —CijAT oa; + CpUsp + Kyicnan + Kyip;  0,j=1,2

M,

S2n —Co W + Kyima s + Kyiq/c (5a,b,¢)

PR 0, —
2 ,2—27 14| 2 3cm2
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where
K, = (3C183;Cpn/Cr — 2CpSus + 2C;)/20;  i,j =1 and 2
th = (3Ei2S3jE/2/622 - 126[2S44 + 126[)/20
K, = (C83;Cpn/Cor + CnSua + 2C,) /12
K, = Ei/z
p=0.(x,¢)+ 0.(x2,—¢)
h=2c, 1=27/3

CixC — Cix:C
Ch=C——2L Ch=C,- 1232
3 33
C23C31 — C23C32
Cr =Cy — Crp=Cy — 6
21 21 C33 ) 22 22 C33 ( )
Cis Cy
c=—" ¢C
Ty T Oy

C;; is the stiffness coefficients of orthotropic materials, o;, coefficient of thermal expansion of kth layer in
direction j, AT, thermal gradient, U, W are the displacement components in the x,- and z-direction, res-
pectively, at z = 0 surface and @, is the rotation of a normal to the reference surface (z = 0).

Solution of the differential equations for the classical plate theory with beam-like behavior assumptions
yield the following stress and displacement distribution equations:

1 1 1

0, = ZNI- + EK,—nz‘z(zz —c?/3) —1—;1\/[,- +5Ki(cm2,2 +q)(2 = 3c%z/5); ij=1,2
z c 1

0y, = an + §m2(3z2 —c?) - ﬁQz(z2 - ) (7a,b,c)
1 1 z 1

0 = 5P = 5m22( = )+ g — = (eman + )2 — )
where
K; = CinS3;Ca;/Co + CiaSas — Ci; i,j=1,2 (8)

a1 1s the normal stress in the x;-direction in any layer, o, normal stress in the x,-direction, in any layer, 5.,
shear stress in the x,—z plane, o.., transverse normal stress in the thickness coordinate z-direction, peeling
stress.

72 cm272 +4q

i (z*/4 — 3c*2/10)

i f21> 5y fsh"“(ZB_”HS”

2

1 cmy ) +
+S33<2p+2h )—S33@n212(23—36‘22)—5‘33#

(2*/4 = 2)2) + zATo. j=1,2

2 3
wy = Uy — zW, — S3,< §h+Mj61> — SyK { 24— 22 )2) + %( /20 — 23/10)}

2 1 2 cma o) +
—S33{Zp‘2—@n2‘22( /4 30222/2) hqz—%@(zs/20—c2z3/6)}

2 1 1
+ S44{ ;h n+—= i emy (2 — *z) — 5Q2(23 — 3022)}

(9a,b)

where w, u, are the displacement components in the z and x, coordinate directions respectively.
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3. Verification of the model

In order to verify the analytical model, an actual microelectronic Ball Grid Array (BGA) type micro-
processor package is used. Fig. 2 shows the picture of the actual package used in this study. The first layer is
BT substrate, the second layer is eutectic Pb/Sn solder, and the third layer is silicon die. The width of the
specimen is 7.04 mm. High sensitivity Moiré interferometry was utilized to measure the strain field in the
package. The geometry of the idealized model is shown in Fig. 3. The specimen was subjected to uniformly
distributed load. In order to keep the behavior in elastic region the applied load is very small 0.0388 N/mm.
Table 1 shows the orthotropic material properties as well as the dimensions and uniformly distributed load
level used in this study. Material properties were obtained using a nanoindenter and by testing the actual
package itself.

R

bl LA BB RN

Fig. 2. Cross section of the actual BGA package.
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Fig. 3. Idealized model and loading of the specimen.

Table 1
Material properties, dimensions and loading information
M, (BT) M, (Pb/Sn solder) M; (silicon)

E, (GPa) 17.5 24.3 112
E, (GPa) 104 24.3 148
E; (GPa) 4.7 24.3 168
G, (GPa) 3.54 9.2 46.2
Gy3 (GPa) 9.04 9.2 332
G,; (GPa) 1.58 9.2 51.7
Via 0.32 0.32 0.28
Vi3 0.32 0.32 0.28
V33 0.32 0.32 0.28
h (mm) 1.32 0.096 0.714
2L x b (mm) 20.5 % 7.04

qo (N/mm) 0.0388
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Assuming perfect displacement compatibility at the interfaces, the continuity requirement of displace-
ments yields the following equations:

s
2
e
2

h
$)-v(o-2)

(10a,b,c,d)

There are 10 unknowns and 10 equations. They are W', W2, W3, U), U3, U3, !, 62, o}, and o3, where o, is
the peeling stress at interface 1, 62, peeling stress at interface 2, o}, shear stress at interface 1, o3, is the
shear stress at interface 2.

We introduce the following boundary conditions for this problem:

at x, =0:

Uy =0 &,=0 0,=0

U;}=0, &;=0, 0i=0 (11a)
U; =0, #=0, 0;=0
at x, = L:
N, =0, M,=0, W'=0
N;=0, M;=0, W*=0 (11b)

N; =0, M;=0, W'=0

o). = 0.244179¢ + 1.1039 x 1073& — 1.698 x 10724¢* 4 1.3238 x 1072&°
—7.77263 x 107" cosh(19.1422¢) sin(8.04406¢)
+ 5.72243 x 10738 cosh(80.1373¢) sin(47.1544¢)
+ 1.58829 x 102 cosh(206.985¢) sin(145.569¢)
—2.5206 x 10~°sinh(9.89979¢) + 5.8532 x 10~ sinh(58.1214¢)
02, = 0.256381¢ — 2.08316 x 10713¢&% 4 1.91455 x 1074¢* — 1.49263 x 10724¢°
—7.6981 x 107" cosh(19.1422¢) sin(8.04406¢)
—1.02923 x 107*¢ cosh(80.1373¢) sin(47.1544¢)
—3.07981 x 10~ cosh(206.985¢) sin(145.569¢)
— 193177 x 107°sinh(9.89979¢) 4 8.15591 x 10~ sinh(58.1214¢)
— 2.47146 x 1072 cos(8.04406¢) sinh(19.1422¢)
+ 6.38423 x 1073 cos(47.1544¢) sinh(80.1373¢)
+ 3.1741 x 107* cos(145.569¢) sinh (206.985¢)

Using a hyperbolic solution we can obtain the following analytical solutions for this problem (¢ = x,/L):
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ol = —0.0192352 — 2.21652 x 1074 — 5.54753 x 1072°¢* 4 4.32498 x 1072°¢°
4 2.26043 x 107 cosh(9.89979¢) — 7.66168 x 10~%" cosh(58.1214¢)
—5.40925 x 107" cos(8.04406¢) cosh(19.1422¢)

— 7.08402 x 107 cos(47.1544¢) cosh(80.1373¢)
— 8.1104 x 107? cos(145.569¢) cosh(206.985¢)

—3.16073 x 10~ "' 5in(8.04406¢) sinh(19.1422¢)
—1.23006 x 10~ sin(47.1544¢) sinh(80.1373¢)
—1.11601 x 107" sin(145.569¢) sinh(206.985¢)

o2 = —0.0215826 — 1.55024 x 107 + 6.76039 x 1072¢* — 5.27055 x 1072
4 2.46604 x 107 cosh(9.89979¢) — 1.16335 x 1072 cosh(58.1214¢)
—4.79321 x 107" cos(8.04406¢) cosh(19.1422¢)

— 3.74523 x 107 cos(47.1544¢) cosh(80.1373¢)
—3.71061 x 107%* cos(145.569¢) cosh(206.985¢)
— 1.7806 x 107! 5in(8.04406¢) sinh(19.1422¢)

+4.47561 x 107 sin(47.1544¢) sinh(80.1373¢)
4 5.56227 x 10" sin(145.569¢) sinh(206.985¢)

W' = —0.00411616 + 0.0048809&% — 0.000748132&* — 0.0000101263¢°
—7.81453 x 107" cosh(9.89979¢) + 6.70124 x 10~* cosh(58.1214¢)
4 4.64708 x 107" cos(8.04406¢) cosh(19.1422¢)

— 2.82542 x 107* cos(47.1544¢) cosh(80.1373¢)
— 4.44478 x 107% cos(145.569¢) cosh(206.985¢)
+ 7.75408 x 107" sin(8.04406¢) sinh(19.1422¢)
+4.39039 x 107* sin(47.1544¢) sinh(80.1373¢)
+ 6.62423 x 107 sin(145.569¢) sinh(206.985¢)

W? = —0.00413873 + 0.00490336£% — 0.000748132&* — 0.0000101263&°
—6.69307 x 107" cosh(9.89979¢) + 4.17166 x 10~* cosh(58.1214¢)
+4.33801 x 107" cos(8.04406¢) cosh(19.1422¢)

—6.90151 x 107* cos(47.1544¢) cosh(80.1373¢)
—2.40261 x 107" cos(145.569¢) cosh(206.985¢)
+2.67108 x 1077 sin(8.04406¢) sinh(19.1422¢)
— 2.65463 x 10~* sin(47.1544¢) sinh(80.1373¢)
—2.55026 x 107" sin(145.569¢) sinh(206.985¢)

—~ o~
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— 0.0041398 + 0.00490446& — 0.000748132¢* — 0.0000101263¢°
—6.36534 x 107 cosh(9.89979¢) — 8.2022 x 10+ cosh(58.1214¢)
+2.05363 x 1079 cos(8.04406¢) cosh(19.1422¢)

— 2.82143 x 107+ cos(47.1544¢) cosh(80.1373¢)

— 1.44152 x 107 cos(145.569¢) cosh(206.985¢)

+3.77458 x 107" 5in(8.04406¢) sinh(19.1422¢)

+2.64981 x 107+ sin(47.1544¢) sinh(80.1373¢)

+ 1.96037 x 10~ sin(145.569¢) sinh(206.985¢)

0.000837783¢ — 0.000292504¢° 4 0.000208293¢* — 0.00016239¢°
+2.1838 x 107'%5inh(9.89979¢) — 1.97618 x 107*! sinh(58.1214¢)
+4.48702 x 107" cosh(19.1422¢) sin(8.04406¢)

—1.76933 x 10*? cosh(80.1373¢) sin(47.1544¢)

— 4.5257 x 1077 cosh(206.985¢) sin(145.569¢)

— 4.37536 x 107 cos(8.04406¢) sinh(19.1422¢)

4 3.77441 x 107 cos(47.1544¢) sinh(80.1373¢)
+3.95631 x 107 cos(145.569¢) sinh(206.985¢)

= 0.000250836¢ — 0.0000822119¢&° + 0.000208293&* — 0.00016239¢&°

—2.85709 x 107'"5inh(9.89979¢) + 8.57583 x 10~ sinh(58.1214¢)
+4.8129 x 107" cosh(19.1422¢) sin(8.04406¢)

+1.89974 x 10~ cosh(80.1373¢) sin(47.1544¢)

+ 8.24727 x 10~% cosh(206.985¢) sin(145.569¢)

+ 5.34755 x 1076 cos(8.04406¢) sinh(19.1422¢)

— 5.96538 x 10*? cos(47.1544¢) sinh(80.1373¢)

—2.60274 x 107 cos(145.569¢) sinh(206.985¢)

—0.000133259¢ + 0.0000380824¢ + 0.000208293&* — 0.00016239¢&°

—2.1825 x 107! 5inh(9.89979¢) + 9.83664 x 10733 sinh(58.1214¢)
— 1.44349 x 107" cosh(19.1422¢) sin(8.04406¢)

— 7.06139 x 107+ cosh(80.1373¢) sin(47.1544¢)

—1.99438 x 10~ cosh(206.985¢) sin(145.569¢)

+1.3021 x 107" cos(8.04406¢) sinh(19.1422¢)

+5.70578 x 107* cos(47.1544¢) sinh(80.1373¢)

+ 7.70085 x 1071 cos(145.569¢) sinh(206.985¢)
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Fig. 4. Experimental setup.

4. Experimental setup

Fig. 4 shows the experimental setup. A miniature material tester unit was developed and manufactured
for this project. The testing unit uses DC-Mike Actuator M-235.5DG to apply the force. The actuator can
be connected with a computer to control the displacement. The resolution for the actuator is 0.016 um, and
the maximum travel range is 50 mm. It can apply a maximum force of 120 N. There is a loadcell that is used
to measure the applied force between the actuator and the specimen. The capacity for the loadcell ALD-SP-
UTC-M-F-250 is 125 N. An aluminum block (thickness 9.7 mm) is placed between the specimen and the
loadcell to obtain a uniformly distributed loading. We did have to try several different thickness blocks to
obtain uniform loading. Moiré interferometry was very instrumental to see that there is no bending in the
aluminum block and load is uniform. Special grease is applied between the block and actuator to prevent
the application of lateral load component. Most important feature of this miniature material testing unit is
that it fits very easily on an optical table to take real-time data with Moiré interferometry. Moreover it can
be used for testing specimens too small for commercially available miniature material testers.

Moiré interferometry is an optical technique for determining in-plane displacements and strains, and
features very high displacement sensitivity and spatial resolution. It uses two coherent beams of a laser to
generate interferometric fringe pattern that carries the information of in-plane deformation of the object
surface. A thin layer of epoxy is applied to the specimen surface to replicate an optical diffraction grating on
the surface. The diffraction grating deforms with the specimen surface as the specimen is loaded, and the
diffracted light records every detail of the deformed lines of the grating and hence records the deformation
of specimen surface. The fringe pattern can be related to in-plane deformation as

Ny
f
N, (13)
f

where U is the displacement in x-direction, V', the displacement in y-direction, N,, the fringe order from
U field, N,, the fringe order from V' field and " is the frequency of reference grating, 1200 lines/mm.
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Spatial filter
Laser Source

Microobjective

Collimator

Field lens

CCD Camera

Fig. 5. Schematic illustration of two-beam Moiré interferometry.

The resolution of Moiré interferometry used in this work is 0.417 um/fringe.

Fig. 5 shows the schematic illustration of two-beam Moiré¢ interferometry to record the N, and N, fringe
patterns that depict the U and ¥ displacement fields. Once the displacements are available the total strains
are computed by differentiation of the displacement distributions with respect to the two basic directions:
horizontal (x) and vertical (y). The strains are given by

1[N,
“=ila)

1[4

_oU oV 1[0ON, ON,
yxy_6y+6x_f[6y 6x]

Fig. 6(a) shows the initial U fringe field. Fig. 6(b)—(d) show the U fringe field for P = 5.6, 14 and 29.6 N,
respectively. Initial V" fringe field is shown in Fig. 7(a). Fig. 7(b)—(d) show the ¥ fringe field for P = 5.6, 14
and 29.6 N, respectively. The P load value is the loadcell registered value. Due to aluminum block the
package is subjected to a uniformly distributed load given by gy = P/(2L X b).

It should be pointed out that fringe fields shown in Figs. 6 and 7 are not perfectly symmetric. This is due
to the fact that almost all microelectronic packages have initial manufacturing defects such as voids. Moiré
interferometry easily picks up these defects as long as they are larger than 0.417 pm in any dimension.

Fig. 6. (a) Initial U field. U field for (b) P = 5.6 N, (c) P = 14 N, and (d) P = 29.6 N.
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Fig. 8. Illustration of the FEA model for the three-layered problem.

5. Finite element analysis

The present example problem was also analyzed by a two-dimensional FEA using general-purpose finite
element code ANSYS with quadrilateral elements under the plane strain condition in the x,—z plane. Fig. 8
shows a mesh of elements for this problem. The total number of elements is 8400. This is a fine mesh and
yields reasonable results according to an earlier study by Basaran and Zhao (2001).

6. Results and discussion

The deflection of the package is shown in Fig. 9 for FEA, test data and analytical solutions, respectively.
Excellent agreement is shown with these three methods. Fig. 10 shows the axial normal stress distribution
for BT layer along the longitudinal direction for FEA, test data and analytical solutions, respectively. The
analytical solution is in very good agreement with FEA, but different from the test data by a difference of
22.4%.

Figs. 11 and 12 show the shear stress distribution along interfaces one and two for FEA, test data and
analytical solutions, respectively. Figs. 13 and 14 show the distribution of peeling stress at interfaces one
and two for FEA, test data and analytical solutions, respectively. Numeration of layers starts from the
bottom.

The distribution of interfacial shear stresses and peeling stresses by the present theory gives good
agreement with the results by the experiment. Both quantitative and qualitative values for the results are
very close between the experiment and the analytical solutions. On the other hand even though FEA yields
qualitatively close results, quantitative FEA results are far off from test data and analytical results. In Figs.
11 and 12 shear stresses monotonically increase and reach the maximum values at the free edge for the
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Fig. 9. Comparison of the deflection for FEA, test and analytical solution.
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Fig. 10. Comparison of axial normal stress for BT layer for FEA, test and analytical solution.
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Fig. 11. Comparison of shear stress at interface 1 for FEA, test and analytical solution.
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Fig. 12. Comparison of shear stress at interface 2 for FEA, test and analytical solution.
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analytical approach, but increase firstly then drop dramatically to get to a negative value at the free edge for
FEA. In Fig. 13 the peeling stress monotonically decreases and reaches the minimum value at the edge for
both analytical approach and experiment, but decreases firstly and then increase near the edge for FEA. In
Fig. 14 the peeling stresses monotonically decrease and reach the minimum values at the free edge for the
analytical approach, experiment and FEA. The minimum values for peeling stresses are very close between
experiment results and analytical solutions, but quite different from FEA. Basaran and Zhao (2001) have
shown that linear-elastic FEA suffers from mesh sensitivity for layered composite structures. Mesh sensi-
tivity in layered bi-material structures is due to stress singularity near the free edge. To be able to use FEA
for this problem a separate asymptotic analysis is required. On the other hand the proposed method does
not suffer from the stress singularity at the edge. Experimental results obviously do not show stress sin-
gularity at 0.417 um resolution. As has been shown by Basaran and Zhao (2001) in real life stress singu-
larity is due to the solution of elasticity equation not a material response where stress reaches infinity. In
reality as Moiré fringes show high stresses at the edge are redistributed to neighboring parts. The agreement
between experiments and analytical procedure shows that the present analytical solution is reasonably
accurate for estimating the interfacial stresses under uniformly distributed loading.

7. Conclusions

An analytical procedure based on classical plate theory for calculating interfacial shear and peeling
stresses in layered structures under uniformly distributed loading and thermal gradient is presented. The
model has been verified for uniformly distributed loading case. This method takes into account orthotropic
material properties. The proposed method has been verified by high sensitivity Moiré interferometry. The
analytical results are in good agreement with experiment results. Comparison of analytical, experimental
and finite element analysis indicate that no matter how fine the finite element mesh is it cannot capture the
actual physical behavior near the free edge even qualitatively. Hence the analytical procedure is much easier
to use for this particular problem.

Acknowledgements

This research project is partially sponsored by the National Science Foundation Grant No-CMS
9908016 and by the US Navy Office of Naval Research Advanced Electrical Power Systems Program.

References

Basaran, C., Zhao, Y., 2001. Mesh sensitivity and FEA for multilayered electronic packaging. Trans. ASME, J. Electron. Packag.
123 (3), 218-224.

Bert, C.W., 1984. A critical evaluation of new plate theories applied to laminated composites. Compos. Struct. 2, 329-347.

Bogy, D., 1968. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loadings. ASME, J. Appl. Mech. 35,
460-466.

Bogy, D.B., 1970. On the problem of edge-bonded elastic quarter-planes loaded at the boundary. Int. J. Solids Struct. 6, 1287-1313.

Chen, D., Cheng, S., Geerhardt, T.D., 1982. Thermal stresses in laminated beams. J. Therm. Stresses 5, 67-84.

Cho, K.N., Bert, C.W., Striz, A.G., 1987. New Theory for Bending of Bimodular Laminates. Engineering Science Preprint
ESP24.87034, Univ. of Utah, Salt Lake City, Utah.

Hayashi, T., 1967. Analytical study of interlaminar shear stresses in a laminate composite plate. Trans. Jpn. Soc. Aeronaut. Space Sci.
10 (17), 43-48.

Hein, V.L., Erdogan, F., 1971. Stress singularities in a two-material wedge. Int. J. Fract. Mech. 7 (3), 317-330.



Y. Wen, C. Basaran | International Journal of Solids and Structures 40 (2003 ) 3331-3345 3345

Lee, M., Jasiuk, 1., 1991. Asymptotic expansions for the thermal stresses in bonded semi-infinite bimaterial strips. J. Electron. Packag.
113, 173-177.

Levinson, M., 1980. An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 7, 343-350.

Lo, K.H., Christensen, R.M., Wu, E.M., 1977a. A higher order theory of plate deformation—part I: homogeneous plates. ASME,
J. Appl. Mech. 44, 663-668.

Lo, K.H., Christensen, R.M., Wu, E.-M., 1977b. A higher order theory of plate deformation—part I: laminates plates. ASME, J. Appl.
Mech. 44, 669-676.

Pagano, N.J., 1969. Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater. 3, 398-411.

Pagano, N.J., 1974. On the calculation of interlaminar normal stress in a composite laminate. J. Compos. Mater. 8, 65-82.

Pagano, N.J., 1978. Stress fields in composite laminates. Int. J. Solids Struct. 14, 385-400.

Pipes, R.B., Pagano, N.J., 1970. Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4,
538-548.

Rehfield, L.W., Valisetty, R.R., 1984. A simple refined theory for bending and stretching of homogeneous plates. AIAA J. 22 (1),
90-95.

Reissner, E., 1975. On transverse bending of plates including the effect of transverse shear deformation. Int. J. Solids Struct. 11,
569-573.

Shih, C.F., Asaro, R.J., 1988. Elasto-plastic analysis of cracks on bi-material interfaces: Part [-—small scale yielding. ASME, J. Appl.
Mech. 55, 299-316.

Shih, C.F., Asaro, R.J., 1989. Elasto-plastic analysis of cracks on bi-material interfaces: Part II—structure of a small-scale yielding
fields. ASME, J. Appl. Mech. 56, 763-779.

Valisetty, R.R., 1983. Bending of Beams, Plates and Laminates: Refined Theories and Comparative Studies. Ph.D. thesis, Georgia
Institute of Technology, Atlanta, March 1983.

Valisetty, R.R., Rehfield, L.W., 1983. A Theory for Stress Analysis of Composite Laminates. AIAA Paper 83-0833-CP, presented at
the 24th ATAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Lake Tahoe, NV, 2-4 May 1983.

Wang, A.S.D., Crossman, F.W., 1977. Some new results on edge effect in symmetric composite laminates. J. Compos. Mater. II,
92-106.

Wang, J.T.S., Dixon, J.N., 1978. Interlaminar stresses in symmetric composite laminates. J. Compos. Mater. 12, 390-402.

Washizu, K., 1968. Variational Methods in Elasticity and Plasticity. Pergamon, New York.

Williams, H.E., 1985. Asymptotic analysis of the thermal stresses in a two-layer composite with an adhesive layer. J. Therm. Stresses 8,
183-203.

Yin, W.L., 1991. Thermal stresses and free-edge effects in laminated beams a variational approach using stress functions. J. Electron.
Packag. 113, 68-75.



	Analysis of multi-layered microelectronic packaging under uniformly distributed loading
	Introduction
	Formulation of analytical model
	Verification of the model
	Experimental setup
	Finite element analysis
	Results and discussion
	Conclusions
	Acknowledgements
	References


